

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 2CR

Question number		Answer			Notes	Marks
1 (a)	Subatomic particle proton neutron electron	Relative mass 1 1 0.0005	Relative charge +1 0		All 4 correct = (2) 2 or 3 correct = (1) 0 or 1 correct = (0)	2
(b) (i)	A increasing ato B is incorrect as of increasing model in the contract as of increasing report as of increasing atomic and increasing atomic as increasing atomic atomic as increasing atomic at	s elements are n elting point s elements are n activity s elements are n	not arranged in not arranged in	order		1
(ii)	D Group 5 Period A is incorrect as Period 5 B is incorrect as Period 5 C is incorrect as Period 2	s phosphorus is r	not in Group 3	and		1
(iii)	M1 Xe / xenon M2 because it h electrons) / 8 e shell				M2 dep on M1 IGNORE refs to noble gas	2 Total 6

Question number	Ansv	wer	Notes	Marks
2 (a)	Physical state at room temperature	Colour		2
	gas	pale green / yellow		
	gas	green		
	liquid	red-brown		
	solid	grey		
(b)	M1 bromine water / bro	omine <u>solution</u>	ALLOW <u>aqueous</u> bromine	2
	M2 turns colourless / de	ecolourised	IGNORE any starting colour	
			M2 is dep on mention of bromine in M1	
(c)	M1 (mixture) turns (from	m colourless) to brown	ALLOW red-brown / orange- brown	3
	$M2$ iodine / I_2 is displac	ed	REJECT iodide	
	OR		IGNORE a displacement reaction occurs	
	(chlorine reacts with iod form iodine	aide ions) to produce /	M2 can be scored by I ₂ as a product in a balanced equation or by a word equation	
	M3 (because) chlorine is	s more reactive (than	ALLOW reverse argument	
	iodine)		REJECT iodide, except if already penalised in M2	
				Total 7

)uesti numb		Answer	Notes	Marks
3	(a)	(i)	magnesium		1
		(ii)	M1 gold	IGNORE silver	2
			M2 is the least reactive	M2 DEP on M1	
				ALLOW it is (the most) unreactive	
	(b)	(i)	(an alloy is) a mixture of metals		1
			OR		
			(an alloy is) a mixture of a metal and another metal	ALLOW (an alloy is) a mixture of a metal and carbon	
				REJECT references to compounds / combining of metals	
		(ii)	M1 the regular arrangement of atoms is distorted / disrupted / disturbed OWTTE	ALLOW lattice / layers / rows of atoms are disrupted / distorted / are less regular / are	2
			OR	irregular	
			carbon atoms are smaller than iron atoms / because iron atoms are larger than carbon atoms	ALLOW carbon and iron atoms are of different sizes	
				ALLOW the atoms are not the same size / the atoms are different sizes	
			M2 (therefore) it is more difficult for the atoms/layers to slide over one another	IGNORE references to the strength of metallic bonds	
					Total 6

	Quest numb		Answer	Notes	Marks
4	(a)	(i)	refinery gases: (fuel for) heating / cooking	ALLOW bottled gas	2
			bitumen: tar / road surfacing / road building / roofing	ALLOW roads	
		(ii)	any one from:		1
			refinery gases have the low(est) boiling point	ALLOW they are the most volatile	
			OR refinery gases do not condense in the column	REJECT refs to melting point	
		(iii)	it is heated / vaporised	IGNORE any temperatures given	1
				ALLOW boiled	
	(b)	(i)	M1 temperature 600 – 700°C	ALLOW any temperature in the range	2
			M2 catalyst alumina / silica / zeolites / aluminium oxide / silicon dioxide	IGNORE pressures	
		(ii)	an explanation containing any three of the following points:		3
			$M1$ alkenes / propene / C_3H_6 can be used to make (addition) polymers / plastics	ALLOW used to make poly(propene)	
				ALLOW to make alcohols / propanol	
			M2 (because) they have double bonds / are unsaturated	IGNORE used as fuels	
			$M3$ shorter alkanes / octane / C_8H_{18} are used as fuels / petrol		
			M4 (because) they have lower boiling points / are more flammable		
					Total 9

Question number	Answer	Notes	Marks
5 (a)	M1 mix / react the two solutions (together)	IGNORE volumes	4
		IGNORE heating at this stage	
		REJECT an indication that solids are mixed for M1	
	M2 filter (the solid lead bromide)		
	M3 wash (using deionised water)	IGNORE any washing before filtering	
	M4 method of drying	eg leave to dry / dry in an oven / leave in a warm place / dry with filter paper	
		REJECT direct heating of final product for M4	
		REJECT if solid is washed again after drying for M4	
		Methods of producing a soluble salt eg evaporating after mixing, leaving solutions in an evaporating basin scores M1 only	
(b)	M1 0.150 × 367 OR 55.05 g		2
	M2 (49.6 ÷ 55.05) × 100		
	OR		
	M1 (49.6 ÷ 367) OR 0.1351	ALLOW 0.135	
	M2 (0.1351 ÷ 0.150) x 100		
		ALLOW a final answer of 90% by either method	
		REJECT (49.6 ÷ 0.15) = 330.67 (330.67 ÷ 367) x 100 for both marks	
(c) (i)	all 6 points plotted ± half a square		1
(ii)	straight line of best fit ignoring the anomalous result at volume = 20 cm ³		1

(iii)	M1 the conductivity decreases (when the volume of lead(II) nitrate added increases)	IGNORE proportional /inversely proportional	2
		REJECT directly proportional	
		ACCEPT negative correlation between volume of lead(II) nitrate and electrical conductivity	
		ALLOW the conductivity increases when the volume of lead(II) nitrate decrease	
	M2 there are fewer ions in the mixture	ALLOW ions are being removed (as lead(II) bromide is formed)	
(iv)	the student forgot to stir the mixture	ALLOW the student didn't allow enough time for the reaction to take place before measuring conductivity	1
		REJECT the student added less / too little lead(iI) nitrate solution	
(v)	the conductivity would increase		1
(d)	electrons are lost (from bromide ions)	REJECT bromine / bromine ions lose electrons	1
			Total 13

Question number	Answer	Notes	Marks
6 (a)	M1 (electrostatic attraction between) <u>positive</u> ions	ACCEPT (electrostatic attraction between positive) nuclei of (metal) atoms	2
	M2 (and) <u>delocalised</u> electrons		
		REJECT any references to ionic bonding / sharing of electrons / intermolecular forces for both marks	
(b) (i)	(squeaky) pop with lighted splint/lit with a (Bunsen) flame	IGNORE just 'burns with a squeaky pop'	1
	(buriseri) Italiic	REJECT use of glowing splint	
(ii)	any two from:		2
	M1 lilac / purple flame	ALLOW flame REJECT other colours	
	M2 potassium melts / turns into a ball		
	M3 potassium moves on the surface	ALLOW floats	
	M4 potassium gets smaller	ALLOW potassium disappears / dissolves	
		IGNORE fizzing / bubbles etc	
(c)	an explanation linking the following points:		3
	M1 lithium has fewer shells than potassium	ALLOW lithium has smaller atoms than potassium	
		ALLOW (outer shell) electron in lithium is closer to the nucleus	
		ALLOW correct electron configurations	
		REJECT 'fewer outer shells'	
	M2 <u>outer</u> shell / <u>outer</u> electron in lithium is more strongly attracted to the nucleus	ALLOW <u>outer</u> shell / <u>outer</u> electron in lithium is less shielded (by inner shells)	
		ACCEPT valence electron	
	M3 (so in lithium the outer shell) <u>electron</u> is less easily lost		
		ALLOW reverse argument throughout for potassium	

(d)	M1 (moles of sodium) 0.75 ÷ 23 OR 0.0326 moles		4
	M2 (moles of hydrogen) 0.0326 ÷ 2	ALLOW M1 ÷ 2	
	M3 (volume of hydrogen) 391.304 (cm³)	ALLOW M2 × 24 000	
		REJECT incorrect rounding / use of 1SF once in M1 - M3	
	M4 391 (cm ³)	ALLOW M3 to 3 significant figures, provided some attempt at calculation	
		391 (cm³) scores 4 marks	
		If M1 is rounded to 0.033 moles, final answer of 396 (cm³) scores 4 marks	
		If M2 is absent, final answer of 782 / 783 (cm³) scores 3 marks	
		If x 2 instead of ÷ 2 in M2 , final answer of 1560 (cm³) scores 3 marks	
(e)	M1 (moles of sulfuric acid) (16.3 × 0.0500) ÷ 1000 OR 0.000815	ALLOW 8.15 x 10 ⁻⁴ (moles)	3
	M2 (moles of sodium hydroxide) = 0.00163	ALLOW M1 × 2	
	M3 0.0652 (mol/dm³)	ALLOW M2 ÷ 0.025	
		0.0652 (mol/dm³) scores 3 marks	
		ALLOW any SF except 1SF	
		If M2 is absent, final answer of 0.0326 (mol/dm³) scores 2 marks	
		If \div 2 instead of x 2 in M2 , final answer of 0.0163 (mol/dm³) scores 2 marks	
		REJECT 16.3 / 25.0 = 0.652 (mol/dm ³) for all 3 marks	
			Total 15

Question number	Answer	Notes	Marks
7 (a) (i)	M1 the forward and reverse reactions occur at the same <u>rate</u>		2
	M2 so the concentrations of reactants and products remain constant	ALLOW so the moles of reactants and products remain constant	
		REJECT so the concentrations of reactants and products are the same	
(ii)	a catalyst increases the rate of (both) the forwards and the reverse reaction <u>equally</u>	ALLOW has the same effect on the rate of forward and reverse reaction	1
(iii)	M1 yield increases		2
	M2 the (forward) reaction is exothermic	ALLOW the reverse reaction is endothermic	
		IGNORE any references to Le Chatelier's Principle (moves / shifts)	
		M2 dep on M1 correct or missing	
(iv)	M1 yield increases		2
	M2 there are more moles of (gaseous) reactants than products / there are fewer (gaseous) moles on the right hand side / there are 3 moles (of gas) on the left and 1 mole (of gas) on the right	IGNORE any references to Le Chatelier's Principle (moves /shifts)	
	ORA	M2 dep on M1 correct or missing	

(b) (i)	M1 (bonds broken) = 436 + 436 + 1072 OR 1944		3
	M2 (bonds formed) = 414 + 414 + 414 + 358 + 463 OR 2063		
	M3 1944 - 2063 (= - 119)		
(ii)	an explanation that links together the following two points:		2
	M1 more energy is given out when the bonds are made	IGNORE refs to numbers of bonds	
	M2 than is taken in when the bonds are broken ORA		
	OR		
	M1 breaking bonds is endothermic / takes in energy AND making bonds is exothermic / releases energy		
	M2 the energy released is more than the energy taken in	DEP on M1	
		If state / imply that energy required to make bonds OR If state / imply that energy released when bonds are broken scores 0	
(c) (i)	11 11 0 11 11 11 11 11 11 11 11 11 11 11		1
(ii)	H 11 0 - 11	REJECT -OH not displayed	1
			Total 14